Laser Amplifier Development for IPDA Lidar measurements of CO2 from Space

نویسندگان

  • Anthony W. Yu
  • James B. Abshire
  • Mark Storm
  • Alexander Betin
چکیده

Accurate global measurements of tropospheric CO2 mixing ratios are needed to better understand the global carbon cycle and the CO2 exchange between land, oceans and atmosphere. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar as a candidate for the NASA’s planned ASCENDS mission to allow global measurements of atmospheric CO2 column densities from space. Our group has developed and demonstrated an airborne IPDA lidar for this purpose. It uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O2 line pair in the oxygen A-band (765 nm), and atmospheric backscatter profiles in the same path. In the airborne lidar, both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate. A space version of this lidar must have a much larger laser power-telescope area product to compensate for the signal losses in the ~40x longer range. An analysis of signal to noise ratios indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, that 1.5 to 2 mJ laser energy is required to attain the needed measurement precision. To meet the laser energy requirements we have pursued two parallel power-scaling approaches for the space laser. These include a single-amplifier approach consists of a multi-pass Er:Yb:Phosphate glass based planar waveguide amplifier (PWA) and a parallel amplifier approach using multiple (typically 8) large mode area (LMA) fiber amplifiers. In this paper we summarize the laser amplifier design approaches and preliminary results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Parametric Oscillators and Amplifiers for Airborne and Spaceborne Active Remote Sensing of CO2 and CH4

Carbon dioxide (CO2) and methane (CH4) are the most important of the greenhouse gases that are directly influenced by human activities. The Integrated Path Differential Absorption (IPDA) lidar technique using hard target reflection in the near IR (1.57μm and 1.64μm) to measure the column-averaged dry air mixing ratio of CO2 and CH4 with high precision and low bias has the potential to deliver m...

متن کامل

Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm.

We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an IPDA lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled ...

متن کامل

Analysis of Range Measurements From a Pulsed Airborne CO2 Integrated Path Differential Absorption Lidar

Determining the CO2 column abundance from an integrated path differential absorption (IPDA) lidar requires accurate knowledge of the range to the scattering surface, i.e., the column height. We have adapted and tested a ranging algorithm for the airborne IPDA CO2 lidar designed at the NASA Goddard Space Flight Center, and have evaluated its accuracy and precision. We applied a quasi-maximum-lik...

متن کامل

Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return

The National Institute of Information and Communications Technology (NICT) has made a great deal of effort to develop a coherent 2 μm differential absorption and wind lidar (Co2DiaWiL) for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA) lidar experiments were conducted using the Co2DiaWiL and a foothill target (tree and ground surface) located about ...

متن کامل

High Energy 2-micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements

A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides highpr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015